
Browser Key Storage Auxiliary File 1

Browser Key Storage Auxiliary 
File
Existing Ethereum private key storage mechanisms for browsers are oriented around 
decentralised mechanisms for users that understand DeFi, and who want to inspect 
each transaction before they sign with the key and the transaction is sent to the 
network. While asking for approval before every signature ensures that nothing 
happens without the user’s permission, it results in a “mash yes” attitude from users 
that don’t understand the technical details of the network, because they don’t have 
the knowledge to vet what’s being asked of them anyway. While this is the ultimate in 
decentralisation, it results in a poor user experience for these users, who are 
comparing against fully centralised solutions where they just click a few buttons and 
things happen.

Infinex is providing more centralised mechanisms around existing Synthetix DeFi 
solutions for users that wish to trust us, while providing Smart Contract guarantees 
and escape hatches for users that wish to moderate and / or control levels of trust 
that we are granted. 

As such, we would like to build a novel Ethereum private key storage mechanism 
with the following properties:

All code built for the solution is Open Source, licensed under the MIT licence.

The tool is packaged and deployed to NPM so that other builders in the DeFi 
space can leverage it in their own projects if they choose.

The solution uses a cross-domain iframe architecture so that it can provide a 
“service within a service” separation that prevents frontend code from accessing 
the keys directly, while still allowing it to request signatures from the service.

Keys are encrypted with the user’s smart account contract address so that a 
scanner looking for private keys on the hard drive is unable to find them.

Keys persist unless the user clears their browser application storage for the key 
storage domain. It is therefore imperative that all contracts that allow for 
interaction from these addresses provide a recovery mechanism using another 
more permanent key that allows the user to re-enrol.

Private keys are generated with a cryptographically secure random number 
generator.



Browser Key Storage Auxiliary File 2

The API used between the primary application and the key storage service 
worker is documented and uses the postMessage() browser API.

There is an SDK that application authors can use to access keys using the API 
or alternative wallets as they choose which allows them to interact with the wallet 
with standard web3 signature calls.

The SDK connects to standard Web3 library ethers, and therefore also 
useDapp() and other common Web3 technologies.

Once a transaction is signed using the API between the service worker and 
primary application code, the transaction is able to be broadcast to an Ethereum 
node using standard Web3 libraries and RPC calls, or a relayer service.

Diagram


