
Stytch and Lit Auxiliary file 1

Stytch and Lit Auxiliary file
System Overview
In the Infinex app, there are two integrations for authentication and authorisation. They 
are Stych and Lit.

Stytch, a SaaS-based authentication platform, provides user sign-up, sign-in and MFA 
methods.

A user of the Infinex app will first create an account in Stytch (this happens transparently 
to the user), giving them access to the Infinex app.

Once the user is logged in, all authorisation will be confirmed using Lit. Lit is a 
decentralised key management system that allows a user to gain access to a private key 
used for signing transactions. Crucially, the user never has direct access to the private 
key. They can only access it using a Lit Action (more on this later).

A backend API is also needed to orchestrate the creation of this private key using a 
Programmable Key Pair (PKP) within the Lit network.

Here is the architecture overview of the system:



Stytch and Lit Auxiliary file 2

System Responsibilities:
Stytch - Is responsible for authentication within the system

Lit Action - Is responsible for authorisation and checking permissions

PKP (Programmable Key Pair) - Is responsible for holding the private keys of a user

PKPHelper Contract - Is responsible for claiming and minting a new PKP for a user

PKPPermissions Contract - Is responsible for adding or taking away permissions 
associated with a PKP

How we use Stytch
Stytch is an authentication system that allows a user to create an account on the Infinex 
app and authenticate.

The Stytch integration happens in the front-end code, and all communication between the 
user’s browser is directly to Stytch. We do not proxy the requests via our Infinex backend, 
preventing any man-in-the-middle attacks and ensuring that an account cannot be 
compromised.

Once a user has authenticated with Stytch, they receive a session JWT, which verifies the 
user making a request.

All MFA methods belonging to the user are stored and held within Stytch.

The stytch dashboard does have a Secret that is available to perform API operations on 
behalf of a user. This secret has access to make changes to all the users within Stytch 
that are used in the Infinex app.

This will not be used within the system, and the number of admins with access to this 
secret should be reduced to the bare minimum, as it allows an admin to take control of an 
account.

Here is a secret shown as clear text in the Stytch admin area:



Stytch and Lit Auxiliary file 3

Next, let’s look at a sequence diagram that shows how the Sign Up user flow will work for 
Infinex:

As you can see in the above flow, the front-end code sends a create request to Stytch. 
Stytch will then send a verification email to the end user.

Once the user clicks the confirmation link, Stytch verifies it, and the user is logged in.



Stytch and Lit Auxiliary file 4

To customise any email sent from Stytch you can login to the Stytch admin area:

Once the user is authenticated and verified they are an authenticated user in Stytch.

This is where the responsibility of Stytch ends. It is only responsible for the authentication 
of the user and the management of MFA methods.

If a user adds a new phone number as an authentication factor, they can do that directly 
with Stytch.

However, to protect the user's account and to authorise any changes to their account, we 
use the Lit Protocol network to sign any transactions.

How we use Lit Protocol
To perform operations within the Infinex app, a level of authorisation is required. Some of 
these operations include:

Adding a new MFA device

Removing an email address

Adding a new phone number

And many more…



Stytch and Lit Auxiliary file 5

The system that authorises the user to perform these operations is called Lit Protocol, 
and we use a few parts of their system to provide this authorisation:

PKPHelper Contract - The smart contract that allows us to create a new PKP for each 
authenticated user in Stytch. There is one of these in the system.

Lit Action - Our custom code that runs on the Lit network to check that a user is 
authorised to complete the operation. There is one of these in the system and the JS 
file is saved in IPFS.

PKPPermissions Contract - A smart contract that we use to manage the auth 
methods, actions and addresses that have access to the PKP. There is one of these 
in the system.

Next, let’s look at each part of the system in more detail.

PKPHelper Contract
When a user first creates their account we also create a PKP attached to their Stytch user 
account.

This PKP is created in our backend and requires us to manage an ETH address with Lit 
Tokens. This address is then used to claim and mint the PKP.

The PKP is created with specific permissions that allow only the following:

Permitted Addresses: The PKP’s address (itself) is the only address that has access.

Permitted Action: Our custom Lit Action is given access to the PKP so that it can 
validate the operation before signing a request. The action has a scope of “1” which 
means it can sign a transaction using the PKP private key.

Permitted Auth Method: The permitted auth methods include the action from above 
and also the Stytch User. The Stytch user has a scope of “0” which means that they 
are unable to sign a transaction with the PKP private key.

The contract method claimAndMintNextAndAddAuthMethods is called with the following 
auth methods:

const claimArgs: PKPHelper.AuthMethodDataStruct = {

permittedAddresses: [],

permittedAddressScopes: [],

keyType: ethers.BigNumber.from("2"),



Stytch and Lit Auxiliary file 6

permittedAuthMethodIds: [authMethodId],

permittedAuthMethodTypes: [AuthMethodType.StytchOtp],

permittedAuthMethodPubkeys: ["0x"],

permittedAuthMethodScopes: [[ethers.BigNumber.from("0")]],

permittedIpfsCIDs: [`0x${Buffer.from(ipfsId).toString("hex")}`],

permittedIpfsCIDScopes: [[ethers.BigNumber.from("1")]],

addPkpEthAddressAsPermittedAddress: false,

sendPkpToItself: true,

};

Once we create the PKP for the user we can use the Lit Action to sign transactions on the 
user's behalf.

The minting process is a fixed cost. This price was 1 Wei at the time of testing.

Next, let’s look at how we use the Lit Action.

Lit Action
The Lit Action is similar to how an AWS Lambda works. You can execute custom JS 
within the Lit Network.

The Lit Action is stored in IPFS and is pulled into by the Lit Nodes for execution.

This custom JS is used in Infinex to confirm an operation can be performed.

At the start of the Lit Action code, we must ensure that the current user has permission to 
use this PKP. We do this by checking the “Permitting Auth Methods” on the PKP and 
comparing that to the resolved auth method on the “Lit.Auth”.

Once we have confirmed that this user has access to the PKP, we can then check the 
custom rules and whether the user needs to step up to perform the operation.

Let’s look at an example of adding a TOTP device.

To add a TOTP device we want to make sure that the user is not only authenticated but 
also that they have at least one other MFA method.

To do that, we can run the Lit Action with the currently logged-in user and check the 
authentication payload:



Stytch and Lit Auxiliary file 7

As you can see, we have authenticated with two factors: Email and Webauthn (Webauthn 
is used here as an example second MFA). In our Lit Action, we can check for these 
authentication factors and run rules.

For example, the following pseudocode checks if we have the required auth factors 
before signing the request:

if (operation === Operation.AddTotp) {

if (!auth_factors.includes(AuthFactor.WebAuthN)) {

throw new Error('You must step up authentication to perform operation');

}

}

Once all the rules have been passed we can confirm the transaction and it can be signed. 
This is performed in the lit action with this code:

await Lit.Actions.signEcdsa({ toSign, publicKey, sigName }),

In the above “toSign” is the transaction data that we want to send to the PKPPermissions 
contract. Let’s look at that next.

PKPPermissions Contract
Once the Lit Action has verified the user has access to the PKP and has the required 
authentication factors to perform the transaction, it will sign the message.

Once this has happened we can then send it to the contract.

In our example, when adding a TOTP we would send a transaction to the 
PKPPermissions Contract to add a new auth method:

export async function addPermittedAuthMethod(



Stytch and Lit Auxiliary file 8

authMethod: AuthMethod,

pkp: IRelayPKP

) {

// 1. Setup the wallet

const pkpWallet = new PKPEthersWallet({

controllerAuthSig: await constructAuthSig(),

controllerAuthMethods: [authMethod], // Passing this param errors

litActionIPFS: import.meta.env.VITE_ACTION_CODE_IPFS_ID,

litNetwork: "cayenne",

pkpPubKey: pkp.publicKey,

});

// 2. Ensure the wallet signs using the action code

pkpWallet.useAction = true;

console.log("pkpWallet.address::", pkpWallet.address);

await pkpWallet.init();

// 3. Connect to the contracts

const litContracts = new LitContracts({

signer: pkpWallet,

});

await litContracts.connect();

// 4. Prepare the auth method payload

const newAuthMethod: LibPKPPermissionsStorage.AuthMethodStruct = {

authMethodType: AuthMethodType.StytchOtp,

id: ethers.utils.keccak256(ethers.utils.toUtf8Bytes("totp-device-A4EE4F45-CF68-4E43-
A611-8B91F6C22581

")),

userPubkey: "0x",

};



Stytch and Lit Auxiliary file 9

// 5. Prepare the mock transaction to estimate gas

const mockTransaction =

await 
litContracts.pkpPermissionsContract.write.populateTransaction.addPermittedAuthMethod(

pkp.tokenId,

newAuthMethod,

[ethers.BigNumber.from("2")]

);

console.log("mockTransaction:: ", mockTransaction);

const gas = await litContracts.signer.estimateGas(mockTransaction);

console.log("gas:: ", gas);

// 6. Add the auth method by sending the transaction

return await litContracts.pkpPermissionsContract.write.addPermittedAuthMethod(

pkp.tokenId,

newAuthMethod,

[ethers.BigNumber.from("2")],

{ gasLimit: gas }

);

}

A sequence diagram of the complete end-to-end flow is below.

Synchronisation
Synchronisation issues can occur when the Stytch account is successfully updated and 
the PKP permissions have not been.

To resolve this we will check that the user has added all of their authentication factors to 
the Lit permissions when starting the app.

For example, if the user has added a phone number to their account inside Stytch but lost 
internet connection before it was added to Lit.



Stytch and Lit Auxiliary file 10

We will check when the user is back online within the Infinex app to see if their Stytch 
authentication factors are in the PKP permissions set.

If we find that the PKP permissions do not contain the phone device then we will present 
a dialog/toast to resolve the conflict. This will be to authenticate using the required 
authentication factor (and a second MFA method) and update the contract.

Removal of Authentication Factors
A user may also want to remove an authentication method. When this happens a similar 
process will be implemented.

First, the authentication factor is removed from Stytch, then, the authentication method 
will be removed from the PKP.



Stytch and Lit Auxiliary file 11

Upgrade Flow



Stytch and Lit Auxiliary file 12


